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The elastic wave displacement equation is transformed into pres-
sure-stress coordinates, where the Born approximation of the Lipp-
man-Schwinger equation in the Fourier-transform domain is em-
ployed to decompose the observed fields into their scattered
components: P-P, P-5, 5-P, and 5-5. Triple Fourier transforms of
the scattered alastic wave data are lineatr combinations of the double
Fourier transforms of the relative changes in the medium properties.
Angular-dependent reflection coefficients for each of the scattering
modes are constructed, and an inversion algorithm is outlined. In-
version of the observed elastic wave fields is accomplished in a
manner similar to the acoustic problem. Density, bulk modulus, and

shear madulus variations in an elastic earth can be recovered by-

utilizing the angular-dependent information present in the observed
wave fields. Examples ilfustrate these points. Transforming the elas-
tic wave data back to displacement coordinates and assuming a
compressional source, an analysis of recorded amplitudes yietds
some practical answers about converted-wave data. Significant
amounts of P— S data should typically be generated by compres-
sional sources, with significant contributions at smaller angles.
However, signal-to-noise calculations suggest that more sweeps
and more geophone channels at longer offsets will typically be
necessary to get P-S sections of comparable quality to P-P
sections. @ 1995 Academic Press, Inc.

INTRODUCTION

Seismic inversion algorithms range [rom traveltime inversion
(5, 14,7, 1, 11,9, 13, and many others] to Born inversion [4,
21, [0, 2, 3, 22, and others] to full-wave inversion [8, 18,
and others]. Traveltime inversion typically uses ray tracing to
compute both the traveltimes and the perturbations of trav-
eltimes with respect to velocity. Although computationally ef-
ficient, traveltime inversion can fail when the earth's velocity
variations are characterized by the same wavelength as in the
source wavelet, However, a conjugale gradient optimization
algorithm can sometimes determine a correct velocity model
fairly quickly, and successful inversion can result even when
the starting model is far from the actual model.

Full-wave inversion overcomes limitations imposed by the
high-frequency restrictions in traveltime inversion and the weak
scattering approximation of Born methods by perturbing the
velocity model until the synthetic seismograms match the ob-
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served seismograms, The synthetic seismograms are ustally
computed by a finite-difference solution to the wave equation,
and lew approximations are necessary, However, the procedure
can fail because the normed difference between the observed
and synthetic seismograms can be highly nonlinear with respect
to the velocity models.

To bridge the gap belween the extremes of traveltime and
full-wave inversion, linearized Born inversion and other ampli-
tude methods have been employed. These intermediate methods
can be highly successful for some data sets, but not typically
for data with strong impedance contrasts. Other intermediate
methods include surface-wave inversion [20] and diffraction
tomography [12]. This paper will concentrate on linearized
decomposition and inversion of seismic data using the elastic
wave equation.

ELASTIC WAVE EQUATION

Clayton and Stolt [4] applied the Born approximation to the
acoustic wave cquation and related the reflectivity function to
variations in the density and bulk modulus of the medium. A
similar approach is implemented in this paper for the elastic
wive equation, leading 1o four reflectivity functions that depend
on variations in three medium parameters—the density, the
bulk modulus. and the shear modulns. The beginning point of
this particular derivation is the two-dimensional elastic dis-
placement equation [6], which is written here in matrix form,

el )

( 0K, + 0 ud.

+

8K — 2)“')8‘ + a:'u‘ax):l

9K — 2u)d, + A pd, . ud, + 9.Ka,

U\'
X ]=0, (1
U:

where U/ = displacement,
p = density,
K = bulk modulus,
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= shear modulus,
@ = frequency.
The spatial and temporal dependence of operators, such as L,
will be suppressed until later.
If the density, bulk modulus, and shear modulus are all
constant background values, ie,p=p,, K =K,,and p = u,,
then the operator L in Eq. (1) becomes

[ ) (l 0) ( Kra,% + f-‘rrag (Kr - ‘u'r)a.raz>:[
L= + )
o 1 K, — p).2, @

w0t + K82
It is convenient to rewrite I, in diagonalized form by using
the operator

4, 0,
H= ( ) 3)
—d, 8,
Then
KL, 0©
Lr = H_l ( ) 3 (4)
0 !'L!LS
where
Le = (po¥IK,) + V7, (5a)
L = (pw*lu,) + V2, (5b)

and A~ is the inverse operator of H,
The Green's operator associated with the wave operator L,
is formally defined as [19, p. 129]

G, =-L\. (6)
Likewise, if we define Gp = —L;' and Gg = —L7!, then

GelK, O
) (7

0 GS/MF

The latter equation can be rewritten as

1 0 K.3,0:0. + p,3.050.
V=L~ L =]paw +
01 Kra:alax + “’r(axQEHz - 2azaiax)

where

a; = [(p/p) — 1], (13a)
a; = [(KIK,) — 1], (13b)
as = [(p/p,) — 1], (13c)
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which expresses G, in the pressure—stress (P-§) coordinate
system (vs displacement coordinates),

THE SCATTERING EQUATIONS—
BORN APPROXIMATION

To relate G (the Green’s operator for L in Eq. (1)) and G,
we will employ the simple identity

A=B+8B'~ANHA

and associate G with A and G, with B. Consequently, if we
define V= L — L,, then

G =G + GVG, 9

which is the Lippmann—Schwinger equation for G, and V cor-
responds to the scattering potential. Equation (9) is valid for
any choice of G, that satisfies the same external boundary
conditions as G. Formally solving Eq. (9} for G,

G =( - GV)G,. (10)
Keeping the first two terms of the Born series expansion of

Eq. (10) yields the Born approximation to the Lippmann-—
Schwinger equation:

G =G, + GVG,. (11)
If L, is close enough to L that G, reasonably models the direct
wave between the source and receiver, then G, VG, should model
simple reflections, and the discarded higher terms should in-
volve multiple reflections only.

For elastic waves, the scattering potential V is the difference
between the wave operators L (Eq. 1) and L, (Eq. 2),

K, 0, a:0, + u,{d.a:d, — 20,a;0,)
) , (12)

,U.'.,-ax ﬂjax + K,.az azaz

and g, represents the variations in density, a, represents the
spatial variations in bulk modulus relative to the reference
bulk modulus, and a; represents the variations in shear
modulus relative to the reference shear modulus. Note that
these perturbation parameters a; are defined slightly differently
in this paper than in Clayton and Stolt [4] and Stoli and
Weglein [16].
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It is convenient to define the data scattered wave field ) as
the impulse response G minus the direct wave arrival ¢,
[4]. Using Eq. (7) and the Bormn approximation in Eq. (11},
the relationship between the data field and the scattering poten-
tial is

D=(G - G)S(w) = G,VG, S(w)

(GPIK, 0
= K41
0 GS/.lu‘r

(14)

G/K, 0
HVH™! HS(w),
1] Gs/ﬂ,—

where S(w) is the Fourier transform of the source time func-
tion,

ELASTIC WAVE COMPONENTS OF REFLECTIVITY

If the source generates both compressional and shear waves,
then the observed data field would generally consist of four
types of scattered waves: () P — P primary scattering (Dpp);
(b) § — P converted scattering (Dg); (c) P — S converted
scattering (Drs); and {d) § — § primary scattering (Dgy;). Per-
forming the same transformation on the data as was applied to
the Green's functions (Eq. (8)), and using Eqgs. (3), (4), (12),
and (14), the data can be represented in the pressure-stress
(P-S) dormain as

(Dpp Dsp)
DPS DSS
K 0
= ( ) HDH™'${w)
0 w
G O Go/K, 0
= )HVH'I ( )S(m) (15
0 GS 0 Gsl,u,,-

G, O )[(K,az 0 )
V2
0 GS 0 s

wgalpr 2p,(0,030; — 8,a39,))
v )|
2|u'r(axa38; - azalax) wzalpr
(GPI’K, 0 )
X S(w). 16
0 Gin (@) (16)

Since in the space—frequency domain there is an implied convo-
lutional integral over space at every matrix multiplication, Eq.
(16) is actually an integral equation [4]. In addition, since most
of the operators are differential operators, most of the integrals
are simple, but at least one spatial integral will remain.

In the following, we will take the earth to be two-dimensicnal
(2D), although relatively straightforward extensions can be
made to 3D (see [4, 17]). In the 2D problem, the recorded data
D is a function of the receiver location x,, z, the source location
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x;, z; and the frequency. Because the convelution over the
spatial variable x becomes a simple multiplication in the Fourier
domain, and the derivatives with respect to x become constants
ik,, the simplest expression of Eq. (16) is in the (&, z, w)
domain. Using WKBIJ Green’s operators and notation sirnilar
to Clayton and Stolt [4), Eq. {16) becomes

(DPP(kgs Zng.r! Zss Ct)) DSP(kgs Zglks: 53 ﬁ)))
Dpglhy, 7.|ks, 2y @) Dislk,, 7,)k,, 25 )

(ei"glz_zsl)/Vg 0
= | dz( 0 (e“r.a“gl)/ng)

Kraz 0 '
X ( ) (87 — k)
0 pa

mzal Br
d
2”.1;,.(’(;!11383 - 63a3 ks)
((e‘"s'z-f:)/(k, %) 0
X .
0 (eE=a)/ ()

oY)

Zi”'r(azaEks - kga3a;)) :,
H)]

Z
w'a,p,

)S(w),

where k, and %, are the wavenumbers corresponding to the
Fourier transforms of x, and x,, respectively, and

v, = (w/o )V — (kiaklw?), {18a)
7, = (IBYV1 — (kiBH "), (18b)
v, = (e, )V 1 — (Balle?), (18c)
7, = (w/B)V1 — (kiB}w?), (18d)
and
al = (K,/p). (19a)
B7 = (.t py)- (19b)

As can be seen from Eq. (19a), «, is the reference (background)
compressional wave velocity, and from (19b), B, is the reference
(background) shear wave velocity.

Let us consider the case for surface reflection data. The
observations of the wave field response are made on the hori-
zontal surface (z, = z, = 0). We will not consider the presence
of a free surface, and so we wiil stop the medium above the
datum from scattering by assuming that a,(x, z) = a)x, z) =
ax(x, z) = O for z << 0. Under these conditions, the absolute
value signs in the exponentials in Eq. (17) disappear and the
evaluation of the derivatives is simplified. Applying the deriva-
tives to the left of a,, @, and a3 to the exponentials on their
left through integration by parts, we obtain the following ex-
pressions for the elastic wave components:
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Dinl, ks @) = [ dz et/ (4n,m,))

X [afwlenl + a(vy, — kk,)

= 2a(B Yk + vk ) 1S(w),  (20)

Daslhy, ke, ) = = [ dz B2 (dod )

X [a(nek, + k) + 2ax(B,/w)

x (Wng - kgkx)(ngks + kgvj)ls(m)s (2])

Dyplhy, iy ) = [ dz cde e vif(4BEun,)

X [al(kgns + ngs) + 203(6,/0))2

x (Vgn.r - kgk:)(kgns + ngs)]S(m): (22)

Dis(ky. by, @) = [ de (e ei(amm,))

X famym, — k) + as((w/B,)

= 2B Jwy ke + 1k (). (23)
Strictly speaking, the expressions in Eqs. (20) through (23) are
only valid at a particular frequency  for &, and k, sufficiently
small in magnitude that the arguments of all the square roots
in »,, n,., ¥, and 7, (Eqs. (18a) through (18d})) are positive. If
one or more of these square roots are negative, we are in the
evanescent region, and Eq. (17) is still valid as long as proper
care of the signs is taken [17]. In the limit of small a,, a,, and
a,, the expressions in Eqs. (20)—(23) become exact, and
am = In(p/p,), a;=1n(K/K,), a; == In{p/w,). (24)
Apart from the exponentials, the only z-dependence in the
integrals in Egs. (20) through (23) is the perturbation parameters
a, a;, and a;. Consequently, these four integrals can be repre-
sented as linear combinations of Fourier transforms of a,, g,
and a,. Letting g,(k,, k,) represent the double Fourier transform
of a,(x, z), Eqs. (20)-(23) become

Dol e ) = (14 v0) [(wlet, YTk, — Ky, v, + 1)
+ (o, — kk)alk, — k., v, + v)
— 2B S kv, + vk, )
X @k, — k., v, + 1)1S(w),
Dps(ky, ko 0) = (— 14,2 )B /o, (v, + k,p,)
X [aithy = k. my + ) + 2(B/w)
X (g, = kkYastky = ko m, + B)IS@), (26)
Dgplky, ke, 0) = (Vdvn,) o, /B Y vk, + kv,)
X [@tk, ~ k,, v, + 1) + 2B/ w)
X (v, — kok )Tk, — k,, v, + M)]1S(w), (27)

(25)
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DSS(kgx k.r: 0—’) = (1/4ng7’:) [(Tl'gns - kgks)a(kg - ks, ng + Th)
+ (0/B,) — 2B/ w))kem, + k)

X aylky — ko 1 + 1)) S(w). (28)
The P-P refiections (Eq. (25)) respond to changes in all three
medium parameters, and the shear modulus contribution to this
mode is negative, corresponding to the loss of energy due to
mode conversion to P-S waves. On the other hand, the con-
verted-wave data (P-S and S-P) and the S-S data respond to
changes in shear modulus and density, but not to changes in
bulk modulus.

LINEARIZED INVERSION

To invert Eqs. (25)—(28), the first step is to deconvolve the
source S{w), and thus define

D'(k,, ks, w) = D(k,, ky, @)/ S{w). (29)

As pointed out by Clayton and Stolt [4], t¢ avoid instabilities

due to S{w) being band-limited, we simply set D' to zero

outside the frequency band width of S{w). This means we

will only be able to resolve the variations in gq,, a,, and ay

within this passband, The inverse problem for Eqs. (25)-(28)
then becomes

3
D'k, key @) = 2, Ay, ks, )@k, — ki, k), (30)
i=1
where
k= v, + v, (31a)
A= (Vv ) pw, — k), (31b)
A, = (HdvpNwlo,), 3ie)
Ay = (—172p0)(B /) (kv + v,k) (31d)
for Eq. (25);
kz = "Tg + Vs, (323)
Al = (_ 1/47?;;1’;)(@/%)2(%1(.: + kgvs)a (32b)
Ay =10, (32¢)
Ay = (1200 ) B oV B, 1o Y (ks + kv )y, — kek)
(32d)
for Eq. (26);
k= v+ n, (33a)
Ay = (dvn) e I B Y (vk, + ko), (33b)
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4 =0, (33¢)
Ay = (112u )@/l (nk, + km )y, — k&) (33d)

for Eq. (27);
k=m,+n, (34a)
A= (1/dnm )y — kK, (34b)
A2 = 0, (340)
A3 = (]/4T]gns)[(wlﬁr)z - 2(,8,./(1))2] (kgns + ngkc)z (34d)

for Eq. (28).

The slight differences between the 4; for P-P scattering in
Egs. (31b)-(31d) and those of Stolt and Weglein [16] are due
to the slightly different definition of our a; (Egs, (13a)-(13c¢))
and that we are presently in pressure—stress coordinates versus
displacement coordinates. Equations for the other modes of
scattering are not discussed by Stolt and Weglein [16]. From
Eq. (30), the g; can be reconstructed as weighted averages of
Y (k,, k,, w) determined at different offsets by using a least-
squares formulation similar to that described by Clayton and
Stolt {4].

ANGULAR-DEPENDENT REFLECTION COEFFICIENTS
The coefficients in Egs. (25) through (28) can be cast in a

more physically understandable form by defining the follow-
ing angles:

kg = (QJ/ar) Sin(¢Pg) = (w/Br) Sin(qug)s (353)
and
ks = ((UI'CE,-) Sin(qﬁ."s) = (GJ/B,-) Sin(¢$s)- (35b)

Then, the expressions for ¥,, #,, ¥, and 7, in Egs. (18a)-
(18d) become

v, = (wle,) cos(dhp, ), (36a)
N, = (w/ ;) cos(gsy), (36b)
v, = (w/a,) cos(Pr), (36¢)
7. = (w/B,) cos(ebs;). (36d}

Since the Fourier transforms x, — k, and x; — k, decompose
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FIG. 1. Geometrical relationships of incident and reflected angles {¢)
and half angles (&) for compressional and shear waves (Egs. (35a), (35b),
and (37a)—(37d)).

the data into plane wave components, it is rather easy to interpret
the angles defined in Egs. (36a)-(36d) (see Fig. 1):

¢y, is the angle between the incident compressional plane
wave and the vertical,

¢, is the angle between the incident shear plane wave and
the vertical;

¢, 15 the angle between the reflected compressional plane
wave and the vertical;

s, is the angle between the reflected shear plane wave and
the vertical.

Using these angles, another set of physically significant
angles can be defined as

Brp = (e + Prs)/2, (37a)
O = (e; + &5.)12, (37b)
Bps = (Pp, + bsy)f2, (37c)
Oss = (s + g,)/2. (37d)

These angles represent the half-angles between the incident
and reflected waves (Fig. 1). If the reflection is from a flat
interface, 65 is the angle of incidence (and reflection) to that
interface for a compressional wave, and #; is the angle of
incidence (and reflection) to that interface for a shear wave.
For the converted modes, 6,5 and & are averages of the incident
and reflected angles.

With the angles defined in Egs. (37a)—(37d), the coefficients
in Egs. (25)—(28) become

vy, — kk, = (wla,) cos(20»), (38a)
kv, + vk, = (/o) sin(26), (38b)
Mok, + kv, = (/o B,) sin(20ps), {38¢)
NV, — kek; = (@) B cos(26ks), (38d)
vk, + ko = (0'/a,B,) sin(20s), (38¢)
v — kk, = (e, B,) cos(20s), (380)
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T’gns - kgks = (0.'}/,8,)2 005(2935)1
ken, + mk = (0l B,)F sin(2 6.

(38g)
(38h)

Therefore, using Eqs. (35a), (35b), (36a)—(36d), and (38a)-
(38h), Egs. (25)—(28) can be written as

Diplky, ke, w) = {LI{4c0s(¢bp,) cos(¢hp:))}t

X [cos(2Bpp)a(k, — ks, v, + 1)

+ Tk, — k. v, + 1) — 2B, sin20p) e,

Xk, — k., v, + )] S(w), 39
Dpslhy, by, @) = {—B75in(28:5)/ (0] cos(s,) cos(p:))}

X [@k, — ko m + 1) + (2B,c08(205)/ )

Xk, =k, 7, + w15 (@), (40)
Diplke, ko, w) = {2 sin(205)/ (487 cos{ by} cos(¢bs,))}

X [aiky — k,, v, + ) + 28,cos(20)/ev,)

K as(ky — ky, v, + . }1S(w), (41)
Dys(ky, k,, m) = {1/(dcos(s,) cos{ s )}

X [cos((20ss)arlh, —ks, M + 1)

+ cos(d8s)a(k, — k., m, + )15 (w). (42)

Thus, the triple Fourier transforms of the scattered elastic wave
data are linear combinations of the double Fourier transforms
of the relative changes in the medium properties expressed
through a,, a,, and a,. As previously mentioned, in the limit
of small a;, a;, and a3, these three perturbation parameters can
be expressed by Eq. (24), and in this limit, Egs. (20)—(23), and
(39)—(42) become exact. The converted-reflected-wave (P-S)
reflection amplitude increases with the sine of the angle between
the converted wave and the incident P-wave (Eq. (40)), whereas
the contribution from the shear modulus to the P-P wave
changes as the square of the sine of the corresponding angle
(Eq. (39)). Consequently, converted-transmitted-wave ampli-
tudes will become significant at smaller angles than shear modu-
lus contributions to the P-P wave,

The integrated, angular-dependent reflection coefficients
R(x, &) for each of the scattering modes can now be easily
extracted from Egs. (39)—(42),

Rpp(X, 6) = cos(26pp)a;(x) -+ a(x)

= 208, /e, Ysin* (26, )as(x), 43)
Rps(x, 0y = (B./a,)sin(2 Bp5) a1 (x)

+ (B, Y sin(4 6pg)ax(x), {(44)
Rsp(x, 0) = (00 B,)'sin(28sp)a:(x)

+ (. /8,) sin(4 65 )a3(x), (45)
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Rss(x, 8) = cos(20s5)a(X) + cos(ds5)as(x), {46)
where the angles are defined in Egs. (37a)-(37d) (see Fig. 1),
and x is the reflection point between the incident and reflected
rays. Although not explicit in Eqs. (43)-(46), R depends upon
source and receiver coordinates x, and x, through the angular
dependence 6. The filtered P-P reflection coefficient, Rp(x, 0),
in Eq. (43) is identical with that of Stolt and Weglein [16].

VARIABLE BACKGROUND

For a realistic earth model, the background medium parame-
ters will vary from location to location. If the background
variations are known, their effects can be removed using the
tollowing steps (see [4, 16, 17) for explicit mathematical de-
tails):

(a) Calculate the exploding background Green’s operator
(projects wavefronts forward in time) and the imploding back-
ground Green's operator (projects wavefronts backward in
time).

{(b) Downward continue the data using the divergence theo-
rem. When downward continuing sources and receivers, the
accuracy of Egs. (20)—(23} and (39)—(42) can be maintained
through large velocity changes in a layered mediuvm by updating
pr, K., and g, in each layer, as well as updating ., ¢p,, s,
and ¢, with Snell’s law.

{c) [Image the data by summing over w. Steps (b) and (c)
are performed with an algorithm like Stolt’s [15] prestack mi-
gration. However, the obliquity factors (the A; in Eq. (30))
differ since the linearized inverse is an amplitude-preserving
prestack migration which attempts to determine relative sizes
of changes in bulk modulus, shear modulus, and density.

{d) Solve a set of linear equations like Eq. (30) for A,. The
relative changes in elastic parameters g; can then be estimated
by taking different linear combinations of the R(x, #) (Egs.
(43)-(46)) (or downward-continued generalizations) over the
available offsets (angles) in the moveout and divergence-cor-
rected data, and then doing a least-squares fit (or generalized
inverse) to the variations in bulk modulus, shear modulus, and
density. Of course, this is contingent upon high-quality data
with a sufficient range of offsets (angles).

SYNTHETIC EXAMPLES

Two synthetic models will help to illustrate the use and
accuracy of our inversion process, or more appropriately termed
a migration-inversion process. First, a dipping model with the
reflector dipping at 6° (Fig. 2a) is analyzed. Due to the dip, the
reflected energy is not spread out constantly along the reflector
and the angie of incidence varies laterally for the same offset.
The density and velocity variations as a function of lateral
position are shown in Figs. 2b and 2¢, respectively. The exact
reflectivity function and the solutions using our inversion
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FIG. 2. Dipping model: (a) the model; (b} density variations below the
reflector; (¢) velocity variations below the reflector; (d} the offset-dependent
reflectivities at locations A, B, and C in the model.

method, the Stolt-Benson [17] migration-inversion method,
and the traditional Kirchhoft, finite-difference, f-%, and phase-
shift migration methods are compared in Fig. 3. In order to
constrain the redundant prestack data and to compensate for
the actual receiver aperture, our inversion process treats the
limited receiver range as a window function with respect to
the ideal, full-space receiver aperture (see [17]). In addition,
our method accommodates for the angle of incidence of the
wave and also the dip of the reflector (see [17]). Consequently,
the solution using our inversion process is much more accurate
(Fig. 3) than the traditional methods. Our method preserves
the amplitude information of the data very well and correctly
reconstructs the zero-offset reflectivity of the reflector.

The second synthetic model is a syncline with offset-depen-
dent reflectivities shown at locations A, B, and C (Fig. 4).
Imaged seismograms for this model obtained using our aper-
ture-compensated inversion process, as well as traditional
Kirchhoff, finite-difference, and f~k methods, are shown in Fig.
5. Comparing the solutions, our inversion method is again much
more accurate, although there are some small amplitude errors
at the two turning points of the syncline,
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zero- _
offset
Ref. |
-0.20 - Y Y
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F1G. 3. Comparison of the solutions using our inversion method (1), the
Stolt—Bensen (1986) migration—inversion method (MI), and the Kirchhoff,
finite-difference (f-d}, -k, and phase-shift migration methods for the dipping
maodel (Fig. 2).

Four inversions of the syncline model using our inversion
scheme with several incorrect background velocities are shown
in Fig. 6. The true background velocity is 3048 m/s (10,000
ft/s), but the inversions are carried out using velocities which
are 10% and 20% higher and lower than this value. When the
velocity error is positive, the diffraction points at the intersec-
tions of the syncline with the model edges are overcollapsed,
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B
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0 305 610 915 1220
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FIG.4. Snycline model: (3} the model; (b) the offset-dependent reflectivi-
ties at locations A, B, and C in the model.
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FIG. 5. Imaged seismograms for the syncline model (Fig. 4) using our

inversion process (aperture-compensated 1) and the Kirchhoft, finite-difference
(f-d), and f-k methods.

and the amplitudes at these poinis are larger than they should
be (Figs. 6¢c and 6d). On the other hand, when the velocity
error is negative, the diffraction points are undercollapsed, and
the amplitudes are smaller than they should be (Figs. 6a and
6b}. From these synthetic examples and others, we conclude that
if background velocity errors are within +10%, the inversion
process is very acceptable for a continuous reflector with a
moderate dip (30° or less). Furthermore, even for higher back-
ground velocity errors of 20%, the inversion is still acceptable
if slight shifting in the reflector’s location and a small error in
amplitude near sharp corners of a reflector are tolerable.

REAL DATA

The above inversion algorithm was applied to a set of P-P
data from the Gulf of Mexico, where some well control existed
and water depths were approximately 300 m so that a deep tow
hydrophone could monitor the source. Considerable effort was
made in the acquisition and processing of the data to preserve
relative amplitudes. Figures 7 through 9, respectively, show a
CMP stacked section, a f-k prestack migrated section, and a
prestack migrated/inverted section (based upon Eqgs. (30)-
(31d)). The latter figure shows relative changes in bulk modulus.
The migrated sections (Figs. 8 and 9) show the same geological
structure, but they have obvious amplitude differences since
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the f-k prestack migration did not attempt to maintain relative
amplitudes, while the inversion algorithm did.

For a second example, the inversion algorithm was applied
to a set of data from another area in the Gulf of Mexico where
good well control existed. The data acquisition was specifically
designed to gather high-quality, broadband, relative amplitude
data. Experimental setup parameters, such as source and re-
ceiver spacing, choice of source, and monitoring of the source,
site location, and contractor were all carefully selected in order
to acquire an optimum set of data with present-day technology.
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FIG. 8. F-k prestack migration of the Gulf of Mexico data used to produce
Fig. 7 (after [17]).

The specific area chosen and some of the details about the data
set must remain undisclosed at present. However, as for the
previous set of data, the general location in the Guif of Mexico
was where water depths are approximately 300-400 m deep
50 that a deep tow hydrophone could monitor the source. Part
of a relative-amplitude P-FP stacked section is shown in Fig.
10, and according w Eqgs. (25)—(28) (or (39)-(42)), this section
is actually a superposition of the relative changes in bulk modu-
lus, shear modulus, and density. The amplitudes are plotted
with positive amplitudes appearing dark and negative ampli-
tudes light. Based upon Egs. (30)—(31d), the prestack data were
inverted to form the three sections shown in Figs. 11-13: (a)
relative changes in bulk modulus (Fig. 11); (b) relative changes
in shear modulus (Fig. 12); and (c) relative changes in density
(Fig. 13).

The large negative amplitudes in bulk modulus (Fig. 11)
along the horizon near 1.5s are indicative of encountering a
shale/gas sand boundary. Since, there are larger relative ampli-
tudes at location #2 than at location #1, this indicates that the
gas saturation is greater at location #2, which is in agreement
with existing well log data. On the other hand, the shear modulus
response (Fig. 12) along this same horizon is positive, which
would be expected since sandstones are typically more rigid
than unconsolidated shales in this area of the Gulf of Mexico.
The larger positive response at location #1 compared to that at
location #2 suggests that the sandstone near location #1 is more
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FIG. 9. Elastic wave migration/inversion of prestacked data used to pro-
duce Fig. 7. This section shows the relative changes in bulk modulus.

rigid than the sandstone near location #2, and this is again
confirmed by well log data. Finally, from the relative change
in density (Fig. 13), one of the largest lateral density conirasts
appears between the location of lower gas saturation (#!) and
the location of higher gas saturation (#2). Overall, the correla-
tion between the inverted seismic data and the well log data
obtained from wells drilled through locations #! and #2 was

Distance (m)
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FIG. 10. Variable density display of a relative umplitude stacked section
(P-P duta) from the Gulf of Mexico (courtesy Conoco, Inc.).
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FIG. 11. Variable density display of relative changes in bulk modulus
produced by elastic wave inversion of the prestacked data used in the Fig. 10
example (based upon Eqgs. (30)—(31d)). ’

very good. The well through #2 encountered a softer sandstone
and a commercial gas reservoir at a depth of approximately
1560 m, whereas the well through #1 penetrated a more rigid
sandstone and was noncommercial.

In summary, the relative change in bulk modulus should be
a qualitative indicator of gas sands, the relative change in shear
modulus should contain at least qualitative information about
the “‘firmness’” or *‘softness’” of the reservoir rock, and the
relative change in density should help delineate regions of high
gas concentration [17]. However, caution must always be used
in interpreting these elastic parameter changes, since magnitude
and sign will depend on the particular reservoir, the surrcunding
rock, the depth of burial, etc. Thus, some well control in the
area is necessary.
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FIG, 12, Variable density display of relative changes in shear modulus

preduced by elastic wave inversion of the prestacked data used in the Fig. 10
example (based upon Eqs. (30)-(31d)).
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FIG. 13. Variable density display of relative changes in density produced

by elastic wave inversion of the prestacked data used in the Fig. 10 example
(based upon Eqs. (30)—(31d)).

CONVERTED-WAVE DATA—SOME
PRACTICAL ANSWERS

The proper expressions for data recorded at the surface as
pressure and shear stress are Egs. (39)—(42). The vector com-
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P-P stacked section from sonthern Oklahoma (courtesy Con-
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FIG. 15, P-S stacked section from southern Oklahoma {(courtesy Con-
oco, Inc.}).

prised of the components Dy and Dps denotes the data generated

by an impulsive pressure source, while the vector formed from

Dgp and Dg; s that due to an impulsive shear source. Assuming

that the source is purely compressional, the relative amplitudes

of Dpgand Dpp yield the relative strength of the converted waves.
From the transformation in Eq. (4),
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Dpp
Dps

K 0 U,
= H . 47
0 um U,

where U, are the displacement coordinates in Eq. (1). For data
recorded as displacements, the inverse to Eq. (47) must be em-

ployed:
U, /K, 0O Dpp
= H'l
U: 0 1w/ \Dps
(48)
keDpp + e Des
= (i/ pw?)

- l)gD.np + ngps

I the direction of travel becomes vertical at the surface due to
refraction, then from Eq. (35a) k&, = 0, and

(492)
(49b)

Ux = (”prmﬁr)DPSs
U, = {—ilpwo,)Dpp.

For horizontal and vertical geophones of equal sensitivity,

and considering a typical case of a; = a; and & =~ 2, the
relative sizes of P-S and P-P reflections will be
r= |”x |1ypicnI/|uz|iypica1 =z (Br/ar) Sin(ZGPS) (50)

== (1/2) sin(2 8ps).

For an angle of incidence of ~15°, sin(26p) = %, and r = .
If the incident angle is =30° then r = ((3)"*/4) =~ 0.4, Thus,
for typical reflection data, the amplitude in the horizontal chan-
nel will be about 0.25 to 0.4 of the amplitude in the vertical
channel. Furthermore, if both channels have comparable noise
levels, the vertical channel will have a signal-to-noise ratio
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FIG. 16. P-P stacked section from western Oklahoma (courtesy Conoco, Inc.).
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FIG. 17.

about 5 to 16 times greater than the horizontal channel. Due
to this low SNR for the P-8 waves, a significantly higher field
effort will be necessary to produce a P-§ section of comparable
quality to the P-P section.

A P-P stacked section (Fig. 14) was produced from the verti-
cal-array data collected by a P-wave vibrator in southern Okla-
homa. The corresponding P-§ stacked section constructed from
the long-offset field files taken from the horizontal-array data
is shown in Fig. 15. Although the SNR is marginal, some
correlations can be made between the sections, and S/« ra-
tios estimated.

Using more and longer sweeps and more geophone channels
at longer offsets, P-P data and P-S data were also collected
from a P-wave vibrator experiment at a site in western Okla-
homa. The P-P stacked section is shown in Fig. 16 and the
P-S stacked section in Fig. 17. As can be seen, the P-S section
is of comparable quality to the P-P section, which is largely
due to the increased field effort, but is also a function of the
geology of the area. These data illustrate that significant
amounts of converted (P-S) data can be generated by compres-
sional sources. Good correlations can be made between the
events in these two sections, as well as good estimates of 3/
¢ Tatios.

CONCLUSIONS

Elastic wave data have been decomposed into their primary
reflection components, P-P, P-S, S-P, and S-S, and the inte-
grated, angular-dependent reflection coefficients determined for
each mode by using a linearized approximation. A general
prescription to invert any of these data components to recover
relative variations in the medium parameters can be surnmarized
as follows:

P-8 stacked section {rom western Oklahoma (courtesy Conoco, Inc.).

(13 Fourier transtorm the data from x,, x,, and ¢ to k,, &,
and w (Eq. (17));

(2) Downward continue the data to depth z with appropriate
Green’s operators. Update background parameters and angles
(Egs. (37a)—(37d)) in each layer. For vanable background,
numerically construct the WKBIJ Green’s operators;

(3) Image the data by summing over w. Steps (2} and (3)
would effect a prestack migration of the data;

(4) Change to a new independent variable k, appropriate
for each scattering mode (Eqs. (31a), (32a), (33a), (34a)) and
form a set of linear equations like (30) for each mode, with
the A’s given in Egs. (31b)-(31d), (32b)-(32d), (33b)—(33d),
and (34b)—(34d). Solve for the perturbations a; (Eqs. (13a)—
(13c)) using a least-squares solution over available offsets (or
available angles) in the data;

(5) Construct the angular-dependent reflection coefficients
(Eqgs. (43)-(46));
(6) Inverse Fourier transform over k,-k, and &, to yield a

spatial map of the local reflectivity as a function of the angle
of incidence.

Using this algorithm for a three-parameter inversion of P-P
data, the following three migrated/inverted sections would re-
sult from the input data: (1) relative changes in density, (2)
relative changes in bulk modulus, and (3) relative changes in
shear modulus. This was illustrated with data from the Gulf
of Mexico.

Considering compressional sources, the following conclu-
sions about reflection data recorded as displacements can be
drawn from Eqs. (39)-(49):

(1) Compressional sources should generally generate sig-
nificant amounts of converted (P-S) wave data.
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(2) The converted (P-§) wave data (and also S-P data)
respond to changes in shear modulus and density, but not to
changes in bulk modulus.

(3) The P-P reflections respond to changes in all three
parameters, and the shear modulus contribution to this mode
is negative, which corresponds to the loss of energy due to
mode conversion to P-S waves,

(4) Faor typical reflections, which are well within the limits
of the linearized approximation, the converted (P-S) wave data
is equally sensitive to increases and decreases in shear modulus.

(5) Theconverted-wave reflection amplitude increases with
the sine of the angie between the converted wave and the
incident P-wave, whereas the contribution from the shear modu-
lus to the P-P wave increases as the square of the sine of
this angle. Consequently, the converted-wave amplitudes will
become significant at smaller angles than the shear modulus
contribution to the P-P wave. However, as noted from Eq. (50),
the signal-to-noise ratio for the converted waves will typically
be smaller than that for P-P waves. This indicates that a signifi-
cantly higher effort would usually be necessary to produce a
good quality P-S section than needs to be made to produce a
comparable P-P section, including (a) more, and probably
longer, sweeps and (b) more geophone channels at longer
offsets.
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